Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurodegener ; 18(1): 9, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36721148

RESUMO

Alzheimer's disease (AD), the most common cause of dementia, results in a sustained decline in cognition. There are currently few effective disease modifying therapies for AD, but insights into the mechanisms that mediate the onset and progression of disease may lead to new, effective therapeutic strategies. Amyloid beta oligomers and plaques, tau aggregates, and neuroinflammation play a critical role in neurodegeneration and impact clinical AD progression. The upstream modulators of these pathological features have not been fully clarified, but recent evidence indicates that the gut microbiome (GMB) may have an influence on these features and therefore may influence AD progression in human patients. In this review, we summarize studies that have identified alterations in the GMB that correlate with pathophysiology in AD patients and AD mouse models. Additionally, we discuss findings with GMB manipulations in AD models and potential GMB-targeted therapeutics for AD. Lastly, we discuss diet, sleep, and exercise as potential modifiers of the relationship between the GMB and AD and conclude with future directions and recommendations for further studies of this topic.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Animais , Camundongos , Humanos , Peptídeos beta-Amiloides , Cognição , Modelos Animais de Doenças
2.
J Vis Exp ; (182)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35575522

RESUMO

Proteinaceous fibrillar inclusions are key pathological hallmarks of multiple neurodegenerative diseases. In the early stages of Alzheimer's disease (AD), amyloid-beta peptides form protofibrils in the extracellular space, which act as seeds that gradually grow and mature into large amyloid plaques. Despite this basic understanding, current knowledge of the amyloid fibril structure, composition, and deposition patterns in the brain is limited. One major barrier has been the inability to isolate highly purified amyloid fibrils from brain extracts. Affinity purification and laser capture microdissection-based approaches have been previously used to isolate amyloids but are limited by the small quantity of material that can be recovered. This novel, robust protocol describes the biochemical purification of amyloid plaque cores using sodium dodecyl sulfate (SDS) solubilization with sucrose density gradient ultracentrifugation and ultrasonication and yields highly pure fibrils from AD patients and AD model brain tissues. Mass spectrometry (MS)-based bottom-up proteomic analysis of the purified material represents a robust strategy to identify nearly all the primary protein components of amyloid fibrils. Previous proteomic studies of proteins in the amyloid coronae have revealed an unexpectedly large and functionally diverse collection of proteins. Notably, after refining the purification strategy, the number of co-purifying proteins was reduced by more than 10-fold, indicating the high purity of the isolated SDS insoluble material. Negative staining and immuno-gold electron microscopy allowed confirmation of the purity of these preparations. Further studies are required to understand the spatial and biological attributes that contribute to the deposition of these proteins into amyloid inclusions. Taken together, this analytical strategy is well-positioned to increase the understanding of amyloid biology.


Assuntos
Doença de Alzheimer , Amiloide , Doença de Alzheimer/patologia , Amiloide/química , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Humanos , Placa Amiloide/patologia , Proteômica/métodos
3.
J Exp Med ; 218(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33683299

RESUMO

Effective and safe treatments for Alzheimer's disease (AD) have been an elusive target for scientists who have been working tirelessly to gain control over a disease that is affecting millions of people, with continually rising case numbers as the population ages. However, in this issue of JEM, Rynearson et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20202560) present a beacon of hope for this field with a preclinical evaluation of a potent and robust γ-secretase modulator (GSM).


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Doença de Alzheimer/tratamento farmacológico , Humanos
5.
Neurobiol Learn Mem ; 154: 141-157, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29906573

RESUMO

Voltage-gated ion channels are critical for neuronal integration. Some of these channels, however, are misregulated in several neurological disorders, causing both gain- and loss-of-function channelopathies in neurons. Using several transgenic mouse models of Alzheimer's disease (AD), we find that sub-threshold voltage signals strongly influenced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels progressively deteriorate over chronological aging in hippocampal CA1 pyramidal neurons. The degraded signaling via HCN channels in the transgenic mice is accompanied by an age-related global loss of their non-uniform dendritic expression. Both the aberrant signaling via HCN channels and their mislocalization could be restored using a variety of pharmacological agents that target the endoplasmic reticulum (ER). Our rescue of the HCN channelopathy helps provide molecular details into the favorable outcomes of ER-targeting drugs on the pathogenesis and synaptic/cognitive deficits in AD mouse models, and implies that they might have beneficial effects on neurological disorders linked to HCN channelopathies.


Assuntos
Doença de Alzheimer/fisiopatologia , Região CA1 Hipocampal/fisiologia , Canalopatias/fisiopatologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Plasticidade Neuronal , Células Piramidais/fisiologia , Potenciais de Ação , Envelhecimento , Animais , Região CA1 Hipocampal/ultraestrutura , Modelos Animais de Doenças , Retículo Endoplasmático/fisiologia , Feminino , Masculino , Camundongos Transgênicos , Células Piramidais/ultraestrutura
6.
J Mol Neurosci ; 55(2): 430-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24994540

RESUMO

Low-level laser therapy (LLLT) has been used to treat inflammation, tissue healing, and repair processes. We recently reported that LLLT to the bone marrow (BM) led to proliferation of mesenchymal stem cells (MSCs) and their homing in the ischemic heart suggesting its role in regenerative medicine. The aim of the present study was to investigate the ability of LLLT to stimulate MSCs of autologous BM in order to affect neurological behavior and ß-amyloid burden in progressive stages of Alzheimer's disease (AD) mouse model. MSCs from wild-type mice stimulated with LLLT showed to increase their ability to maturate towards a monocyte lineage and to increase phagocytosis activity towards soluble amyloid beta (Aß). Furthermore, weekly LLLT to BM of AD mice for 2 months, starting at 4 months of age (progressive stage of AD), improved cognitive capacity and spatial learning, as compared to sham-treated AD mice. Histology revealed a significant reduction in Aß brain burden. Our results suggest the use of LLLT as a therapeutic application in progressive stages of AD and imply its role in mediating MSC therapy in brain amyloidogenic diseases.


Assuntos
Doença de Alzheimer/terapia , Terapia com Luz de Baixa Intensidade , Peptídeos beta-Amiloides/metabolismo , Animais , Cognição , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Monócitos/metabolismo , Fagocitose
7.
Am J Pathol ; 183(2): 369-81, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23747948

RESUMO

Amyloid-ß (Aß) peptides, starting with pyroglutamate at the third residue (pyroGlu-3 Aß), are a major species deposited in the brain of Alzheimer disease (AD) patients. Recent studies suggest that this isoform shows higher toxicity and amyloidogenecity when compared to full-length Aß peptides. Here, we report the first comprehensive and comparative IHC evaluation of pyroGlu-3 Aß deposition in humans and animal models. PyroGlu-3 Aß immunoreactivity (IR) is abundant in plaques and cerebral amyloid angiopathy of AD and Down syndrome patients, colocalizing with general Aß IR. PyroGlu-3 Aß is further present in two nontransgenic mammalian models of cerebral amyloidosis, Caribbean vervets, and beagle canines. In addition, pyroGlu-3 Aß deposition was analyzed in 12 different AD-like transgenic mouse models. In contrast to humans, all transgenic models showed general Aß deposition preceding pyroGlu-3 Aß deposition. The findings varied greatly among the mouse models concerning age of onset and cortical brain region. In summary, pyroGlu-3 Aß is a major species of ß-amyloid deposited early in diffuse and focal plaques and cerebral amyloid angiopathy in humans and nonhuman primates, whereas it is deposited later in a subset of focal and vascular amyloid in AD-like transgenic mouse models. Given the proposed decisive role of pyroGlu-3 Aß peptides for the development of human AD pathology, this study provides insights into the usage of animal models in AD studies.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide , Animais , Encéfalo/patologia , Angiopatia Amiloide Cerebral/metabolismo , Chlorocebus aethiops , Modelos Animais de Doenças , Cães , Síndrome de Down/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Placa Amiloide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...